Ela Maps on Positive Operators Preserving

نویسنده

  • LAJOS MOLNÁR
چکیده

Let H be a complex Hilbert space. Denote by B(H)+ the set of all positive bounded linear operators on H. A bijective map φ : B(H)+ → B(H)+ is said to preserve Lebesgue decompositions in both directions if for any quadruple A,B,C,D of positive operators, B = C +D is an A-Lebesgue decomposition of B if and only if φ(B) = φ(C)+φ(D) is a φ(A)-Lebesgue decomposition of φ(B). It is proved that every such transformation φ is of the form φ(A) = SAS∗ (A ∈ B(H)+) for some invertible bounded linear or conjugate-linear operator S on H.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Maps Preserving General Means of Positive Operators∗

Under some mild conditions, the general form of bijective transformations of the set of all positive linear operators on a Hilbert space which preserve a symmetric mean in the sense of Kubo-Ando theory is described.

متن کامل

Ela Linear Maps Preserving the Idempotency of Jordan Products of Operators

Let B(X ) be the algebra of all bounded linear operators on a complex Banach space X and let I(X ) be the set of non-zero idempotent operators in B(X ). A surjective map φ : B(X ) → B(X ) preserves nonzero idempotency of the Jordan products of two operators if for every pair A, B ∈ B(X ), the relation AB + BA ∈ I(X ) implies φ(A)φ(B) + φ(B)φ(A) ∈ I(X ). In this paper, the structures of linear s...

متن کامل

Additive Maps Preserving Idempotency of Products or Jordan Products of Operators

Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...

متن کامل

Perron-frobenius Theory for Positive Maps on Trace Ideals

This article provides sufficient conditions for positive maps on the Schatten classes Jp; 1 p < 1 of bounded operators on a separable Hilbert space such that a corresponding Perron-Frobenius theorem holds. With applications in quantum information theory in mind sufficient conditions are given for a trace preserving, positive map on J1, the space of trace class operators, to have a unique, stric...

متن کامل

A Note on Quadratic Maps for Hilbert Space Operators

In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009